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Abstract—Although delta-sigma modulators are
widely used in oversampling D/A converters, their
requantization error can contain discrete tones that
are objectionable in high-fidelity audio applications.
This paper investigates the asymptotic second-order
statistics and ergodicity of the requantization error
and shows that such tones can be eliminated in a
class of delta-sigma modulators with least significant
bit dithering.

I. INTRODUCTION

Delta-sigma (AY) modulator-based D/A convert-
ers are well represented in the consumer andio electron-
ics market and show promise for achieving greater than
20 bits of accuracy. However, they suffer from a prob-
lem not encountered in their conventional counterparts:
limit cycles within the AX modulators can cause tones
of significant power to appear in the requantization er-
ror [1], [2]. As the ear is particularly adept at discerning
such tones, the behavior is objectionable in high fidelity
audio applications.

It has been observed that adding a one-bit random
dither sequence to the least significant bit of the AX
modulator input can reduce the unwanted tones in the
requantization error [1] However, this observation has
not been previously backed up by theory. This paper
presents a theoretical basis for the behavior. It shows
that limit cycles can be completely avoided for a large
class of AT modulators with a properly chosen random
bit sequence. The result has practical significance be-
cause it implies that for the relatively small price of
a feedback shift register circuit to generate a pseudo-
random bit sequence and an extra input bit in the AY
modulator circuitry, the requantization error tones can
be essentially eliminated.

The remainder of the paper consists of two main
sections and an appendix. Section II describes a generic
AY modulator architecture of which many of the known
AY modulators are special cases, and Section III derives
various of its properties. These properties are inher-
ited by any AT modulator that fits the paradigm of the
generic AT modulator. The appendix presents various
lemmas that support the results of Section III.

II. A GENERIC DELTA-SIGMA MODULATOR
Many of the published AT modulator architectures
are special cases of the generic AT modulator shown in
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Figure 1: A generic delta-sigma modulator architecture.

Figure 1 [3]. The system consists of a linear time in-
variant (LTT) digital system, T(z), followed by a bank
of requantizers followed by another LTI digital system,
U(z). A feedback path joins the output of the requan-
tizer bank to the input of T(z). In an actual circuit,
coarse D/A converters would either follow the requan-
tizers directly, or be placed further along in the pro-
cessing chain. Provided no additional requantization is
performed the position of the D/A converters does not
affect the analysis.

The matrix transfer function T(z) will be written
as:
Fi(z) Gua(z) G k(z)
T(z) = . . .

Frlz) Gralz) G rel2)

and the following two conditions will be assumed:
Condition 1: The requantizers do not overload.

Condition 2: For each j, k. the impulse response g; (1)
(i.e., the inverse z-transform of G;:(z)) only takes on
values that are integer multiples of A;/A;.

As discussed in [3], these conditions are sufficiently mild
that a large class of the published AT modulators, in-
cluding most of the multistage architectures, are special
cases of the generic AY modulator.

By definition, the input sequence to any D/A con-
verter only takes on a finite number of discrete values
and it is impractical not to place the same restriction on
the input to each requantizer within the AY modulator.
Consequently, the input sequence and the sequences ap-
plied to each requantizer must always be multiples of
some minimum step-size, 6, and the impulse responses
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fr(n) (i-e., the inverse z-transform of Fk(z)) and g;, k(n)
must be mteger -valued. For example, in a AL mod-
ulator implementation wherein multi-bit binary num-
bers are used to represent numerical values (prior to the
coarse D/ A conversion), § would correspond to the value
of the least significant bit.

The output of the AT modulator can be consid-
ered the sum of two components: a signal component
corresponding to the input sequence and a requaniiza-
tion error sequence arising from the requantization pro-
cess. Without loss of generality, each requantizer can
be considered a device that outputs the sum of its in-
put sequence and a requantization noise sequence. The
requantization error sequence is therefore the compo-
nent of the output sequence corresponding to the re-
quantization noise sequences from all the requantizers.
For example, referring to Figure 1, the requantization
noise sequence introduced by the k'* requantizer must
be ex(n) = si(n) — rk(n) As shown in [3], the requanti-
zation error sequence is equal to the requantization noise
sequences filtered by

N(z) =U(z)(I-G(2)) ™

where G(z) equals T(z) with the first column deleted.
The signal component is equal to the input sequence
filtered by

5(z) = U(z)(I - G(2)) ' F(2),

where F(z) is the first column of T(z).

The results of this paper correspond to requantizers
that perform uniform mid-rise quantization with step-
sizes A, ..., A, respectively, where each A is an even-
integer multiple of 6. Such is the case when two’s com-
plement arithmetic is used, and each requantizer trun-
cates its input and adds A;/2 to the result. Similar
results can be obtained for other types of uniform re-
quantizers.

III. REQUANTIZATION NOISE STATISTICS
Define the actual input sequence, x(n), to be the
sum of the desired input sequence, T4(n), plus a dither
sequence, d(n). The desired input sequence is the se-
quence that is to be converted into an analog wave-
form, and the dither sequence is a sequence of inde-
pendent identically distributed (iid) random variables.
Because both the desired input and dither sequences
are restricted to amplitudes that are multiples of 6, each
member of either sequence must have a distribution con-
sisting of point masses at integer multiples of 4.
Let no be the time that the system is “turned on™.
As shown in [3], for each n > ny, the requantization
noise can be written as

aln) = 55 - A<§— [o10+3 setmeton=m)] >

(1)

where f;(n) is the inverse z-transform of F;(z) and ax(n)
is a deterministic function of T(z) and n that does not
depend upon the input sequence. The angle brackets
denote the fractional part operator. For all n < no,
€x(n) will be taken to be zero.

The following two theorems present sufficient con-
ditions for the requantization noise to be asymptotically
white, independent of z4(n), and uniformly distributed
as a function of run-time. The results are sufficient to
ensure that limit cycles are eliminated.

Theorem 1: Suppose the probability distribution of
the dither sequence is non-zero on at least two consecu-
tive multiples of 6 and that {m fi(n) mod 2t} does not
converge to zero as n — oo for any m = 1,..‘,%1L -1
Then, as n, — —o0, €(n) converges in distribution to a
random sequence €} (n) that is independent of z4(n) and
is uniformly distributed on the set of amplitude points

(i6:i=-54+1,-2k+2,...,3F
Proof: For each k, (l) has the form e (n) = &% —

AU, _,, where U,_,, is a random variable satlbfymg
the hypothesis of Lemma 2 (see Appendix) with

n—ng

+ Y flm

m=0

Jza(n —m )]7

1
Hn—ng = Ak

bi = fi(i)8/ Ak, ;i = d(n — i) /6, and Ny = A, /6.

If {m fi(n) mod 5} does not converge to zero then
(mb;) must not converge to zero either. Lemma 2(i)
therefore implies that as ny — —o0, U,_,, converges in
distribution to a random sequence U, that is uniformly
distnbuted on the set of amplitude points {i/N, : i =
0,..., s —1}. Hence, €;(n) converges in dlstnbutlon to
a random sequence €, (n) that is uniformly distributed
on {i6 : i = —%t+1,...,55}. Moreover, since the
convergence is uniform with respect to z,(n) and since
the distribution of €,(n) is not conditioned on z4(n),
€.(n) must be independent of z4(n).

L]

Theorem 2: Suppose in addition to the hypothesis
of Theorem 1 that for p # 0, {[mgfk(n) + my fr(n +
p)] mod 96-’1} does not converge to zero for for any pair
of integers, m, and m;, not both zero, such that 0 <
mg,m; < 3t — 1. Then, €;(n) and € (n + p) are inde-
pendent.

Proof: The proofis similar to that of Theorem 1 except

that it relies upon Lemma 2(ii) instead of Lemma 2(i).
u

One of the simplest dither sequences that satisfies

the hypotheses of Theorems 1 and 2 takes on values of
6 and 0 with fixed probabilities. This corresponds to
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dithering the least significant bit of the input to the AX
modulator.

For particular AY modulator architectures, it is
easy to determine whether each fi(n) satisfies the hy-
potheses of Theorems 1 and 2. For example, the first-
order AY modulator satisfies the hypothesis of Theo-
rem 1 but not Theorem 2 while the single-loop second-
order AY modulator [1] satisfies the hypotheses of both
theorems. Indeed, many of the common A¥ modulator
architectures satisfy the hypotheses of both theorems.

In accordance with the usual definitions, take the
mean and autocovariance of the quantization noise from
the k'™ requantizer to be

M, = lim Ela(n) (2)
and
Canp) = lim Ef(e(n) = Mo )(e(n+p) = M),
(3)
respectively.

It follows directly from Theorem 1 that M, = %
Moreover, Theorem 2 implies that each requantization
noise sequence is asymptotically white with autocovari-
ance

Az 52 .
S8 482 fp=0:
C( . = 12 + [ up ’
k k(p) {O, otherwise.

In most of the common AY modulators, N(z) has only
one non-zero element. In such cases, if z4(n) is a wide-
sense stationary or quasi-stationary sequence, it follows
that the power spectral density (PSD) of the overall AT
modulator output, neglecting DC terms, can be written

as
A3 62
=]

where S,.(e’*) is the PSD of z(n), and N, (e/*) is the
non-zero element of N(z).

For the results presented so far to be of practical
value, it is necessary that the statistical averages (2)
and (3) equal the corresponding time averages and that
there is no average time correlation between the requan-
tization noise and the input sequence. These properties
are asserted by the following theorem.

S,y (7)) = S, (e7%) |S e"")l +

N,

Theorem 3: If the hypothesis of Theorem 1 is satisfied,

N-1

¥ Z ex(n) = M., (4)
and
L Mo
¥ > zan)(ex(n+p) = M) =0 (3)

n=0

in probability as N — co. Moreover, if the hypothesis
of Theorem 2 is satisfied,

N-1

% > (e(n) -

n=0

M. )ex(n+p) — M) — C.,.,.(p) (6)

in probability as N — oc.

Proof: Because the proofs of (4), (5), and (6) are sim-
ilar, only the proof of (6) will be provided.

Let X, = (ex(n)— M., )(ex(n+p)— M, )=C.,.,(p)
Then, it is sufficient to show that

N-1
1
— X,—-0
n=0
holds in probability. From the proof of Theorem 2, it
follows that for every integer j > n,,

X~ 0

{d(i):i>5)

uniformly with respect to the variables {n,,,...
and {z4(n)}. The resilt follows from Lemma 3.
]

77’.5—1}

Another important and largely unanswered ques-
tion relates to the rate of the asymptotic convergence.
The results above characterize the long-term average be-
havior of the quantization noise, but do not give insight
into its short-term behavior. Provided the asymptotic
convergence is rapid enough compared to the input over-
sampling ratio, the short-term behavior is typically not
a significant concern. In general, the results above indi-
cate that the rate of the asymptotic convergence tends
to be a strong function of the specific AX modulator
architecture and the Fi(z) functions in particular.

IV. APPENDIX

This appendix presents three lemmas that provide
the basis for the theorems presented above. The first
and third lemmas were presented in [3] and [4], respec-
tively, and are repeated here for convenience. The sec-
ond lemma is believed by the author to be new. In this
section, the letter ® is used to denote the characteristic
function of its subscript variables.

Lemma 1: For each p =0,1,..., let
r P
Xy =pp + Z beis Y,=v+ Z CkTks
k=0 k=0

Jo = (X,), and V, = (Y}), where {n; } is an iid sequence
of random variables, {y,} and {v,} are any sequences of
random variables that are independent of each 7, and
{b+} and {c\} are any deterministic sequences. Then

b4

&,,.,(t.t)) [] 2,

k=0

@X,,.Yp(tO*tl) = tObk+ tlck)
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Furthermore,
By, v, (2mme, 2mm, ) = Bx,, v, (27me, 2, ),

for every pair of integers mg,m;.

Lemma 2: Let N, and N, be positive integers. In the
hypothesis of Lemma 1 suppose for every k that x; and
b, only assume integer multiples of 1/N,, that v, and
¢ only assume integer multiples of 1/N;, and that 7,
is integer-valued with a probability distribution that is
non-zero on at least two consecutive integers.

(i) If {mbs) does not converge to zero for any m =
1,..., Ny — 1, then U, converges in distribution to
a random variable U that is uniformly distributed
on the set {i/Ny:i=0,...,N, — 1}.

(ii) If (moby + m,ci) does not converge to zero for any
my=0,...,Ny - 1land m; =0,...,N; — 1 except
my = my = 0 then U, and V, converge in distri-
bution to independent random variables U and V/,
respectively.

Proof: To show that U, and V, converge in distribu-
tion to U and V, respectively, it is sufficient to show
that @y, v, (%, 1) converges to a characteristic function
Dy, v(to,t1) as p — oo. By definition, (U,,V,) only as-
sumes values from the set {(mo/No,m,/N;) : m¢ =
0,....,.No — I;m; = 0,...,N; — 1}. Hence, the sam-
ples {®y, v, (2mme,2rm,) : mg = 0,..., Ny — Lim; =
0,...,N; — 1} uniquely determine ®y, v, (to,t,). It is
therefore sufficient to show that @y, v, (to,t;) converges
to @y v (to, ;) at these sample points.
The characteristic function common to each 7; is

=3

Z Pn(n)ejms

n=-oc

(I)n(t) =

where p,(n) is the probability distribution of each 7.
By hypothesis, there must be some pair of consecutive
integers ko and k; such that p, (k) # 0 and p,(k,) # 0.
Without loss of generality, assume that p(k) < p(k:).
Applying the triangle inequality gives

[8,(0)] < [a (o) [ + e

[pn (kl) = Py (ko )] e’

+

+ z ,Pn (n)ejm I

n#ko, k1

=p,,(k0)[2|cos(t/2)l -1] + z Py(n).

n#Ekg

Thus, |<I>,,(t)| < 1 for all ¢ not equal to integer multiples
of 2.
From Lemma 1, it follows that

lim @y, v,(27me, 2rm, ) = 0,

p—oo

provided {mob; + m,ck) does not converge to zero. Fur-
thermore, since all characteristic functions equal one at
the origin, ®y,,v,(0,0) =1 for all p.

Because @y (t) = @y, v,(t,0), it follows from the
hypothesis of (i) that lim,_.. ®y,(2mm) = ®y(27m)
where

1, ifm=0;
u(2mm) = {o, ifm=1,... N1

These samples uniquely specify the characteristic func-
tion

. sin( ¢
By (t) = —l—e‘f““ﬁo‘)——(z) :
o sin (m)
which corresponds to a random variable, U, that is uni-
formly distributed on {i/Ny: ¢ =0,...,N; — 1}.
Similarly, it follows from the hypothesis of (ii) that

=) LR (- 4p) sin(izﬂ) sin(%)
Ny N, - Y’

041 sm(;,ﬂ;) Sm(ﬁl\ﬁ)
corresponding to a random vector, (U, V), that is uni-
formly distributed on {(3/No,i1/Ny) 1 45 = 0,..., Ny —

1,4, =0,...,N, —1}. Hence, U and V are independent.
n

Sy v(te,t:) =

Lemma 3: For each k = 0,1,..., let X; be a deter-
ministic function of the random sequences {xq, ..., X}
and {#o,...,7x}, where the 7, are independent random
variables that are independent of the x,. Suppose that
the distribution of each X has its support restricted to
[~08,8] where 3 € R, and that for each non-negative
integer j, as k — oo

E (X»)—-0

(nn:n>i}

uniformly with respect to the variables {7, ...
{xo,x1,.-.}. Then

,7; } and

R,
]—V- Z X,, -0
n=0
in probability as N — oco.
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